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1. INTRODUCTION

In recent years, tremendous advances have been made in the basic
understanding of shaped charge mechanics. These include the processes
of liner collapse, jet formation, and formulas for jet radius and
strain. Both two-dimensional computer codes and one-dimensional model-
ing have been used successfully for the analysis of shaped charges.
One important area, however, has not been well understood and cannot
be simulated easily by computer methods. This area is the breakup of
the shaped charge jet. This breakup, or segmentation, occurs in all
jets that have a large velocity gradient with higher speeds at the tip
and lower speeds near the tail. This process can be seen in Fig. 1
which shows flash radiographs of a typical shaped charge jet at three
successive times, displayed in the proper position-time coordinmates.
At the earliest time the jet segmentation has begun near the tip; most
of the jet is still continuous., The later times show the completely
segmented jet.

In [1]) and {2], we have presented initial studies on the jet
breakup phenomenon. Let us now briefly review the results of these
initial studies. Formulas for the strain and rcdius of shaped charge
jets based on a one-dimensional model are presented in [1]. Further,
in {1] and [2], a method to deternine the jet breakup time distribu-
tion from timed flash jet radiographs was developed. This method was
then applied to jets from a series of identical BRL 81.3mm standard

2° copper-lined charges and an unconfined 105mm 42° copper lined
charge in [1]. Despite the scatter in the results, the breakup time
does show a definite "trend" as is indicated in [1]. In fact, for the
particular charge studied, the trend indicates that the jet breaks
first near the tip with a progressively increasing breakup time towards
the tail. ‘Thus, shaped charge jets do not necessarily break simulta-
neously along their length, as assumed previously by some investigators.
The resulting jet treakup time distribution was then contrasted to the
one~-dimensional theorecvical jet strain and radius distributions. This
is presented in {1] and [2] where it is concluded that, for copper
liaers, the breakup time distribution is related to the jet radius dis-
tribntion. No other correlation was indicatad in [1] or [2].

The present study addresses the problem of jet breakup through the
use of two approaches: (1) triple~-flash radiographs of various jets to
determine jet velocity, breakup time, etc., and (2) surface instability
as a cause of breakup.

The first approach is actually zn extension or continuation of the
work we have presented in [1]. The method of [1] to measure breakup
time, jet velocity, etc. from timed flash radiographs 1is applied here
to many jets from various shaped charges having different cone angles,
different liner wall thicknesses, liners with tapered walls, differeant
liner materials, and light or heavy confinement. This approach has
enabled us to obtain many characteristics of jets from a large cross-
section of shaped charges. The data from all of these charges are
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conveniently tabulated and graphically displayed in this report.
The geometry of the charges studied are given in Appendix A. The
measured jet velocity, breakup cime and jet radius are plotted
graphically in Appendix B. Appendix C contains a tabular list of
this data and in addition includes the aspect ratio of the jet seg-
ments and difference in velocity between neighboring particles. All
of this data has been analyzed to obtain trends in the breakup phe-
nomenon. The breakup treads have been contrasted with the one-
dimensional strain and radius predictions using the formulas of {1].
Within an individual je” no general correlation has been observed
between breakup time and one-dimensional parameters. The results

of the breakup time measurements of all copper jets studied, however,
do exhibit a definite trend. This trend
yields a semi-empirical design curve for breakup time which can be
used in conjunction with a one-dimensional shaped charge model to
predict breakup time for copper jets. This first approach is pre-
gented in Section II.

The second approach involves the study of the instability
caused by various disturbances in the jet with the goal of deter-
mining whether or not this instability may cause the jet to breakup.
We know from classical hydrodynamics that a continuous liquid jet
will break into small segments because of surface instability. The
breakup of a shaped charge jet resembles this very much, and our
study shows that the shaped charge jet is indeed subject to surface
instability. 1In principle, there are three forces which may cause
this instability: surface tension, aerodynamic force, and material
strength (elastic-plastic force) in the jet. Both analytical
studies and two-dimensional finite-difference numerical calculations
were made, and the results indicate that material strength 1s the
main cause for shaped charge jet instability and breakup. In addition,
the effect of strain-rate, time of disturbance initiation, and inertia
were considered. The results of this stability study are discussed
in Section III. Finally, general conclusionrs are stated in Section IV.

We would like to note that the results presented in this report
summarize the work conducted during the entire contract period. Some
of these results were presented previously in quarterly progress re-
ports.



I1. JET RADIOGRAPH DATA

The results which we presented in [1l] indicate that the measure-
ment of jet radiographs provides an efficient and useful procedure to
obtain breakup data. Also breakup trends are indicated in [1] which
warrant further investigation. In this study, we have theirafore con-
tinued using this approach to study ja2ts from a large number of
charges having different geometries and liner materials.

A. General Approach

The detailed development and equations for the computation of
breakup time, jet velocity, etc. from the radiograph measurements are
given in [1]. Here, we will give only a brief description of this
mathod. Figure 2 shcws the position-time plot of two typical neigh-
boring jet segments labeled as K and K+1l. Suppose we have radiographs
of these two segments at times t; and t, as indicated in Figure 2.
(Note: in the actual case, we have analyzed three timed flash radio-
graphs, as supplied by BRL). We may then compute the velocity of each
segment by measur‘ug how far che segments have traveled during the
time ty-t;. In the two radiographs the segments are separated by a
gap as shown. Under the assumption that the segments remain at con-
stant length and constant velocity after breakup (which is a good
approximation after the jet 18 completely broken as evidenced by the
radiographs), it is a simple matter to trace back the front of seg-
ment (K+1) and the rear of segment K until they meet, i.e. the gap be-
comes zero. The time of this meeting t; 1is the breakup time of seg-
ment K from segment (K+1). This procedure may be applied successively
to each pair of particles, i.e. K and (K+1), (K+1) and (X+2), etc.,
until the complete breakup time distrib-ition is obtained. There is8 a
certain degree of approximation to this procedure. Since the particles
do not break successivaly from one end of the jet to the other, we
sometimes have the situation where a larger segment breaks from the
main jet, continues to stretch, and then finally breaks into smaller,
constant velocityv, constant length segments. However, the time between
the initial break and the succeeding breaks is small, therefore the
procedure may still be applied approximately to this breakup situation.
The resulting breakup times have been found to be within the accuracy
of the experimental procedures.

This method of determining the breakup time was then applied to
jet radiographs from many various shaped charges. These radiograpus
were obtained irou BRL through the courtesy of R. Jameson, R. Karpp,
J. Simon and J. Majecrus., For convenience, the differen; charges are
tisted in Table I; the detailed geometry and drawings ot each are
given in Appendix A. It can be seen from this table that we have
studied the effects of cone angle, wall thickness, wall taper, and
liner material on the breakup mechanism.

-
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Copper Lined

Charge
No.

WNMOWMEWN -

Aluminum Lined

Charge
No.

9
10
11

List of Charges Examined *

Cone
Angle

20°
40°
60°
90°
42°
42°

420 t 2]

Cone
Angle

40°
60°
90°

Dianeter
s

38.1
38.1
38.1
38.1
50.8
50.8
50.8
81.3

Diameter

Wall Thickness
o

1.168
1.168
1.168
1.168
0.762
1.524
2.540
tapered wall

Wall Thickness
wm

1.626
1.626
1.626

* Note that we have also performed a breakup study of jets from the BRL
Standard 81.3mm charge and the 105mm unconfined charge in [1].

** Angle of inside wall
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B. Results of Radiograph Measurements

From the measurements of the jet radiographs, we have determined
the jet velocity, jet breakup time, and jet radius distributions for
all of the charges listed in Table I. Plots of all of the data ob-
tained are given in Appendix B. Figure Bl shows the jet velocity
distribution along the length of the jet at a particular time for the
series of 31.8mm copper lined charges having cone angles of 20°, 40°,
60° and 90° (Charge Nos. 1-4). Test results of these charges were
first reported in [3], where the average breakup time of the complete
jet was given. The time base used in all of the present studies is
given as t = 0 when the detonation wave reaches the apex of the cone.*
From Fig. Bl we see that, for a given liner material, the tip velocity
of the jet decreases as the cone angle increases. It should be noted
that, for the 20° copper cone, the resulting jet possessed a bifur-
cated region at the tip portion. We therefore made our radiograph
measurements starting from the first fully coherent particle of the
jet, which has a velocity of 8.4mm/usec, much smaller than 9.9mm/usec
reported in [3]. We should further note that it has been determined
that this bifurcated region is caused by supersonic flow in the jet
formation region (See [4] for details). None of the other charges
examined under this study possessed this bifurcated region.

The jet velocity distributions for the remaining charges are
shown in Figures B2-B6. It is interesting to note that Fig. B6 in-
dicates that the 81.3mm tapered wall charge studied here has a higher
jet velocity (8.3 km/sec at the tip) than the 81.3mm standard charge
with constant wall thickness studied in [1] (7.9 km/sec at the tip).
This somewhat surprising result has a fairly simple explanation. Be-
cause of the wall taper (thicker at the cone apex tapering linearly
toward the cone base), as we proceed from the apex toward the base the
liner elements reach higher collapse velocity than corresponding ele-
meats of the charge with a constant wall thickness. This effect pro-
vides the tapered wall liner with an overall decrease in the collapse
angle (i.e. the angle of the collapsing liner with the charge axis,
denoted as 8 in [1]). From the basic one-dimensional jet formation
theory [5] a decrease in collapse angle, in general, produces a
higher jet velocity. Finally, from :'igs. Bl1-B6 we alsc observe that
the velocity distribution for each of the charges studied is aporoxi-
mately a straight line.

Plots of the breakup time of the jet particles versus their
position in the jet at a particular time for the eleven charges ex-
amined are given in Figs. B7-Bl7. The scatter in the results is to
be expected because of the nature of the breakup mechanism. In all
cases a definite trend in breakup time exists. To demonstrate chis
trend, a straight line was passed through the data using the method
of least squares. This line is also shown in Figs. B7-Bl17. All of
the jets studied exhibit trends which indicate that the tip portion
breaks earlier than the rear portion except for the 38.1mm, 40°
copper charge (Charge No.2) and the 81.3mm, 42° copper tapered wall

* Except for the data which is tabulated in Appendix C: The data there

is based on the initiation time of the main explosive charge. See
Appendix C for details.
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charge (Charge No.8). Breakup trends for these two charges show that
these jets breakup almost simultaneously. Note that since only part
of the jet for each charge appeared in the radiographs, these con-
clusions are only valid for the portion of the jets measured.

Next, the measured jet radius distributions for the eleven charges
studied are given in Figures B18-B28. We see from Figs. B818~-B21 that
for copper lined charges of a given diameter and wall thickness the
average jet radius increases with increasing cone angle. This effect
is not so pronounced in the case of the aluminum lined charges as can
be seen from Figs. B22-B24. Further, we note irom Figs. B25-B27 that,
all else being equal, relatively large incrcases in wall thickness
give only small increases in jet radius.

Finally, all of the data resulting from the radiograph measure-
ments are tabulated in Appendix C. In addition to the jet velocity,
breakup time, and jet radius, wiich were graphically displayed in
Appendix B, we have also tabwulated the aspect ratio (length to diameter,
2/d) of each segment and the jet velocity difference between neighbor-
ing segments AV,. The average &/d and average AV, are summarized 1in
Tables II and II1I. in these tables, we have also summarized this
data for the BRL Srandard 8l.3mm and 105mm unconfined charges which
were studied in [1]. Since there was a certain amount of scatter in
these quantities, the coefficient of variation (standard deviation di-
vided by the mean) in each case was also computed. From Table II we
see that the average &/d varies between 4 and 6 for copper lined
conical charges of constant wall thickness. The tapered wall cone
has an i/d ratio or 3.3 which may indicate that, even though this
charge has a higher tip velocity than the corresponding constant wall
charge, its penetration performance at longer standoffs may be poorer
because of the small segment size and early breakup time. The alumi-
num lined charges studied have average £/d ratios of 3.89, 4.92, and
8.139.

From Table III1 we observe that the overall average velocity
difference between neighboring segments for the copper lined charges
is approximately 110m/sec. Recently, Held [6] has published that the
average AV; for the copper lined German charges he studied was approx-
imately 100m/sec. For the aluminum lined charges studied here, we
found an overall average AVJ of 145m/sec. Finally, we obtained radio-
graphs of a copper lined French charge, the ISL "S2T", from Perez [7] and
fcund the average 2/d to be 5.62 and the average 4V; to be 137m/sec. Data
of this nature is useful in obtaining rough estimates of the number of
jet segments in newly designed charges.

C. Comparison of Data with Theory

In (1) and [8] an improved one-dimensional theoretical shaped
charge model was developed. This improved model is based on the
classical Pugh-Eichelberger-Rostoker [5] theory but uses a semi-
empirical collapse formula to describe the explosive-metal interaction
process. Further, formulas for jet strain and jet radius were



Copper Lined

Table 11

Average Aspect Ratio (L/d) of Jet Segments

Geometry
Charge (Dia., Cone Angle, t/d Coeff. ~f
No. Wall Thk.) (Average) Variacion
1 38.1 mm, 20°, 1.168 mm 4.69 .520
2 38.1 mm, 40°, 1.168 om 5.95 411
3 38.1 mm, 60°, 1,168 mm 5.91 447
4 38.1 mm, 90°, 1.168 mm 4.49 .301
5 50.8 mm, 42°, 0.762 mm 4.18 412
6 50.8 mm, 42°, 1.524 mm 4.48 . 361
7 50.8 mm, 42°, 2.540 mm 4.48 .336
8 81.3 mm, 42°, tapered 3.31 417
* 81.3 mm, 42°, 1.905 mm 5.93 .375
* 86.4 mm, 42°, 2.921 mm 5.21 .324
Average 21/d for all copper jets  4.86
c.V. .180
Aluminum Lined
Geometry
Charge (Dia., Cone Angle, L/d Coeff., of
No. Wall Thk.) Variation
9 38.1 mm, 40°, 1.626 mm 3.89 454
10 38.1 mm, 60°, 1.626 mm 4.92 .420
11 38.1 mm, 90°, 1.626 mmm 8.39 . 426
Average /d for all AL jets 5.73
c.V, 411

* These charges were studied in {1] and this data is included here
for completeness



Table III

Average Jet Velocity Difference Between Neighboring Segments (Avj)

Copper Lined

Geometry :
Charge (Dia., Cone Angle, Avj Coeff. of
No. Wall Thk.) {m/sec) Varistion
1 38.1 om, 20°, 1.168 mm 106 474
2 33.1 om, 40°, 1.168 mm 111 .367
3 38.1 wm, 60°, 1.168 mm 135 .335
4 38.1 mm, 90°, 1.168 mm 109 <344
5 50.8 ca, 42°, 0.762 mm 110 497
6 50.8 em, 42°, 1.524 mm 115 .522
7 50.8 mm, 42°, 2.540 mm 119 .449
8 81.3 tm, 42°, tapered 108 .519
bd 81.3 mm, 42°, 1.905 mm 96 . 557
* 86.4 mm, 42°, 2.921 mm 113 445
Average AVj for all copper jets 112
c.v. .090
Aluminum Lined
Geometry
Charge (Dia., Cone Angle, AVj Coeff. of
No. Wall Thk.) ~ (m/sec) Variation
9 38.1 mm, 40°, 1.626 mm 143 .362
10 38.1 =m, 60°, 1.626 mm 130 .528
11 38.1 mm, 90°, 1.626 =m 162 .154
Average AVJ for all A2 jets 145
c.V. . .111

* These charges were studied in [1] and this data is included here for
completeness.
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developed for this model. Since the publication of (1] and [8], we
have improved this model further by incorporating the effect of liner
acceleration during collapse. This enables the prediction of the in-
verse jet velocity gradient region during formation.

This improved one-dimensional model was applied to the eleven
charges studied here. In Figs. B1-B6 the theoretical jet velocity
distribution of each charge is shown in contrast to the experimental
data. We gee that excellent agreement is obtained between theory and
experiment. Note that in Fig. B4 and B5 tnere 1is some discrepancy
between the experimental tip velocity and the tip velocity predicted
by the theory for Charge Nos. 6 and 7. This prediction ccould be im~
proved by using a different value for the acceleration. At present,
the acceleration values used in all the cases are given by a simple
empirical formula which depends only ou liner density and thickness.
For these two particular charges the liner thickness to liner diameter
ratio is much higher than the other chargee studied and therefore thui:
simple acceleration formula may be inaccurate for these two charges.
Theoretical jet radius distributions were also computed from the one-
dimensional model at the breakup times tp. The ty, lines in Figs. B7-
Bl17 were used. As shown in Figs. B18-B28, the theoretical radius dis-
tributions compare reasonably well with experimental values.

We next compared the breakup time distribution with the theoret-
ical distribution of other jet properties. The goal here was to find
some correlation among these¢ distributions which would indicate con-
trolling parameters in the breakup mechanism. We compared trends in
the following properties to the breakup trend: jet straim n, jet radius
ry, and jet strain rate A. The quantities n and ry are defined in
[i], and A is simply the first time derivative of n defined there. We
also contrasted these properties to the amount of time elapsed from
the formation of an element until it breaks up. This quantity is the
absolute breakup time minus the absolute time when the element is first
formed, and is denoted tp-tf. The quantity ty, is from the experimental
least squares line and the quantity tf is computed from the one-
dimensional model.

Since the quantities jet strain, jet radius, and jet strain rate
before breakup are continuously changing with time, it is appropriate
to compare the breakup time of each segment with these quantities at
the time when each segment breaks up. To do this, we first trace back
each segment in the radiograph to its original position in the cone,

%, using the one-dimensional model. We are then able to compute -, ry,
and * of the segment at its own particular breakup time from the least
squares experimental trend. Figure 3 shows a plot of n, ri, %, tp and
tp-ty versus x/h {or the 38.1mm, 60° copper charge (Charge No.3). Note
that x denotes the original liner position and h denotes the original
height of the cone. Also plotted in Fig. 3 is ry at t = 55 usec which
is a time before any breakup has occurred.

11
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Figure 3 indicates that there is no reasonable correlation be-
tween the breakup time distribution and n at t, or n at tp. Both the
ry at t, and ry; at 55 usec appear to foliow the general trena of the
breakup time. "Plots similar to Figure 3 for the remaining 10 charges
were also plotted but are not presented here in the interest of spacek,
However, the results indicate that within one jet even ry at tp and rj
at a time before breakup may not follow the trend of breakup time.
Results do indicate that for copper lined charges r; at a time before
breakup seems to increase as the breakup time increases but no general
conclusion may be drawn.

We next looked at the breakup data from all the copper lined
charges together rather than just throughout a single jet. In Fig. 4
we have made a plot of ty-tgy va. ry at ty for all of the copper lined
charges studied here (Charge Nos. i-s). Also, in Fig. 4, we have
plotted the data for the 81.3mm BRL Standard Charge and the 105mm un-
confined charge studied in [1). Three data points were selected from
each jet. With the exception of one charge, the 38.lmm, 90° copper
(Charge No.4), all of the data points for tp-ty fall within a narrow
region monotonically increasing with increasing r;. We may speculate
that the 90° charge does not fall in this region because the low
collapse velocities in a charge with a large cone angle results in
lower pressures and velocities at the stagnation point during forma-
tion. Therefore, the properties of this jet may be different from
those of smaller angle cones, Figure 4 indicates a correlation be-
tween the two quantities for the other charges howevar. In fact, if
we draw a line through these points, we obtain a useful breakup time
vs, radius curve, which can be used for design purposes. For example,
suppose we design a new copper lined charge and wish to obtain its
breakup time distribution. We can compute the radius of the elements
of the jet as functions of time. If we then plot the radius vs. time
curve of a particular jet element on the breakup time vs. radius co-
ordinates, we find that this curve will intersect the breakup curve.
This interseirtion gives the breakup time of that element. We then
repeat this procedure for a series of jet elements. This then vyields
a breakup time distribution for the new charge. This breakup time in-
formation may ther. be used together with other information on a pene-
tration analysis to evaluate the final performance of the new design.

* These plots for the remaining 10 charges may be found in [9] and [10].
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I11. STABILITY OF SHAPED CHARGE JETS AS A CAUSE FOR BREAKUP

A, Background

The concept of liquid jet stability Jn classical hydrodynamics
has been studied by many authors (e.g. [11}-[14])). The idea of apply-
ing a stability approach to shaped charge jets was motivated by the
remarkable resemblance of the breakup of shaped charge jets to that of
1iquid jets. This resemblance is shown in Fig. 5 where the breakup of
a glycerine~water jet [15] is contrasted with a typical shaped charge
jet. Further, we note that the average %/d ratio for all of the copper
jet segments studied, 4.86 (see ‘lable 11), is very close to the value
of the critical A/2rg ratio of 4.5 predicted by classical stability
analyses of liquid jets, where X is the wavelength of the surface dis-
turbance, and ry is the radius of the undisturbed Jet. These facts j
suggest that the shaped charge breakup phenomenon may be caused by
surface instability.

The first stability analysis of a liquid jet was published in

1879 by Lord Rayleigh [11]. He considered an inviscid fluid jet mov-
ing at a constant uniform axial velocity subjected to surface distur-
bances about the equilibrium position. He obtained the most unstable
wavelength and the perturbation growth rate using energy considera-
tions. His values of wavelength and growth rate have been verified by
experiments, and his work is still considered the foundation for the
study of jet stability.

Weber [12] extended Rayleigh's work to include viscous Newtonian
luids. The wavelength of the most unstable surface disturbance for a
viscous fluid does not deviate too much from the ideal fluid case of
(\/2rg) = 4.5. He also found that Newtonian viscosity tends to dampen
the instability. Anno {16,17) gave a more general derivation of the
analyses by Rayleigh and Weber.

Goldin, et al [15] studied the breakup of non-Newtonian viscous
fiuid jets. They used essentially the same approach as Levich (13}
and obtained results on critical wavelength, growth rate, and breakup
time for fluids possessing general viscoelastic stress-strain re-
lations, In [15], it is shown that the Newtonian fluid is the most

- stable one among viscous fluids. Experimental evidence for different

types of fluids seems to verify their results.

In our initial work, we have determined that three effects may
cause jet breakup: surface tension, aerodynamic forces, and strength
of the jet material. We have applied all tue essential results of
the classical analyses to the conditions of a typical shaped rharge
jet. We have also examined many experimental breakup records in the
light of stability considerations. These results have ruled out the
importance of the surface tension and aerodynamic effects in the
stability of a shaped charge jet. This leaves the effect of jet
strength. Since strength effects are not readily amenable to analvt-
ical treatment, we have turned to numerical approaches to study the

15
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effects of jet strength,

In the next section of this report, we will first present results
of a preliminary analytical study. Then more detailed results on the
numerical study will be presented, including the study of various sur-
face disturbances, time of disturbance initiation, strain rate, and
inertia effects in jets with streagth.

B. Preliminary Analytical Stability Study of Shaped Charge Jets

The results and formulas developed in the classical analyses of
11quid jet stability were applied to the case of a typical shaped
charge copper jet. Analyses for non-stretching and stretching jets
were used. The results of this study are summarized in Table IV and
will be briefly discussed below.

1. Non-stretching Jets

(a) Surface Tension. In our initial analysis, we have
applied the classical formulas of Rayleigh {11] and Weber {12] (o the
conditions of a typical copper shaped charge jet. Rayleigh's work
governs the case of an ideal fluid under the effect of surface tension
and Weber's results are applicable to a viscous fluid under the effect
of surface tension. The growth rate of disturbances on the surface
of the jct as predicted from these formulas is quite small as compared
to that observed in radiographs of shaped charge jets. In fact, accord-
ing to these formulas the amplitude of the initial disturbance only
grows 8% in 100 usec, whereas it is observed from experiments that the
shaped charge jet used for this analysis breaks up at approximately
100 usec., The value of surface tension for copper used was 1.0 N/m.

(b) Aerodynamic Force. We have applied the formulas of
Levich [13] to the problem of air passing over a shaped charge jet. A
verv large disturbance growth rate was predicted by this analysis.
We feel, however, that the analysis is not too realistic for the pres-
ent problem since Levich only considers linear incompressible aero-
dynamics and the present case is actually in the hypersonic regime.
We would also like to indicate two experimental observations which
demonstrate that aerodynamic effects are not important in the breakup
of shaped charge jets. Vitali [18} has pointed out that superplastic
jets do not breakup along their length in the typical manner of a
copper jet, yet both jets are subject to the same aerodynamic force.
Also, Frey [19] has studied photographs of copper jets in a vacuum,
and found the typical surface disturbance growing within 100 L.sec, sim-
ilar to those found in jets traveling through air.

2. Stretching Jats

Mikami, et al {14] has developed an analytical approach to study
the growth of disturbances on the surface of a stretching viscous
thread surrounded by another viscous medium. We have modified this
analysis to make it applicable to the case of a shaped charge jet. As
shown in Table IV, appreciable growth rates and reasonable A/2r ratios

17
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were predicted by this analysis at times in the regime of typical
breakup times: (Note that in the stretching jet case )/2r changes
with time thus making the comparison more complicated.) However, the
approach of [14] has neglected inertia forces to make the governing
equations analytically tractable. Because of the high strain rates
present in the shaped charge problem {nert{a effects will be important.
This {mportance of inertia effects will be verified by numerical cal-
culations in the next sub-section. Thus, we feel that the results of

this analytical method of [14] as applied to the shaped charge problem
are not conclusive.

C. Numerical Study of Shaped Charge Jet Stability

In the previous sub-section we have studied surface tension and
aerodynamic effects on jet stability by relatively simple anaiytical
techniques. Since effects such as material strength are, at present,
not readily amenable to analytical treatment, we have used numerical
techniques to study this and other effects. One advantage of numerical
studies over analytical studies is that in the numerical treatment all
of the pertinent effects may be included at the outset, whereas ana-
lytical treatments necessitate the use of certain simplifying assump-
tions.

1. General Approach

The numerical study of jet stability was undertaken through the
use of the two-dimensional code HEMP {20,21]. The HEMP code 1is a
general purpose code which solves the conservation equations of two-
dimensicnal elastic-plastic flow in plane coordinates or in axisym—
metric coordinates. The solution is by the method of finite differ-
ences and uses the Lagrangian formulation. The code has the capabil-
ity of handling many various boundary and initial conditions.

Karpp [22] first applied HEMP code calculations to the problem of
a stretching elastic-plastic jet with the surface slightly disturbed.
After calculating various wavelengths of the surface disturbance, he
found a broad range of most unstable wavelengths with reasonable
growth rates. We have applied the same basic method to study the
breakup problem in more detail. The boundary and initial conditioms
cf this method will now be briefly described.

A stretching shaped charge jet is modelled by a prismatic circu-
lar bar fixed at one end, with the other end moving at a constant
velocity. A linear velocity distribution in the axial direction is
imposed as the initial conditisn, and the surface of the bar is ini-
tially perturbed in the shape of a cosine function, as shown in Fig. 6.
The perturbed surfaces are free from any tractions and the end sur-
faces are free of any shear stresses. Let the axial velocity be
V(x,r,t), the radial velocity be u(x,r,t), the stress vector on the
lateral surface be g(x,rs,t), and the shear stresses on the end sur-
faces be T (0,r,t), 14g(0,r,t), T 4(L,r,t), 7xg(L,r,t), then the
boundary conditions are
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v(0,r,t) = 0
V(L.f.t) - Vo

g(xbr;ut) - )
Trx(0,ryt) = 1,9(0,r,t) = 1 (L,r,t) = T, o(L,r,t) = 0
and the i{nitial conditions are
V(x,r,0) = (Vg/L)x @)
u(x,r,0) = 0

The calculation may often be limited to only one cycle of the surface
wave along the axial direction because of the symmetry of the problem.*

2. The Effect of Yield Strength

In the analytical studies discussed previously all of the jets
were assumed to be fluid in nature and the driving forces for the in-
stabllity were restricted to surface tensions, viscosity, and aero-
dynamic forces. Now we will study tyf effect of yield strength on the
stability of an elastic-plastic jet.

To study this, we computed four jet segments having different
yleld strengths but being ctherwise identical. In these calculations
we selected a copper jet segment with one cycle surface disturbance
having an initial length of 7.5mm and an initial mean radius of 1l.5mm.
The initial amplitude of the wave was taken as 107 of the initial
radius. The velocity difference between the two ends of the segment
was 0.0625 mm/usec. In a real jet this initial time corresponds
typically to a time 50 usec after the segment was formed or approxi-
mately 100 usec after the detonation of a BRL 81.3mm charge. This
initial configuration and calculation mesh is shown in Fig. 7. 1In all
cases the copper equation of state ag specified in HEMP was used.

The value of density used was 8.9x10 5/ (8.9 g/cm ) and the elas-
tic shear modulus was taken as 4.56x1010 Pa (456 kbar). The first of
the four segments has no strength i.e. purely fluid; the next three
have yield strengths of 2x107 Pa (.2 kbar), 2x108 Pa (2 kbar), and
2x10% Pa (20 kbar). The configuration after 32 usec for each of these
four cases is also shown in Fig. 7. To compare results we have com-
puted a quantity &, the relative growth of amplitude, which is defined
as the difference between the amplitude of the disturbance after
stretching, A, and the initial amplitude, Ag, divided by the initial
amplitude, i.e. (A-Ap)/Ag. This quantity is also given for each case
in Fig. 7. We observe from these calculations that the disturbance
grows faster for jets with larger values of yield strength.

We are studying a typical element in the middle of the jet. This element is
being stretched by the force of the forward part of the jet on one side and
the rear part of the jet on the other. The details of how the momentum and
energy is transferred from one portion of the jet to another are currently
being studied.

Note that Karpp and Simon (23] have recently studied the strength in
shaped charge jets using the experimental results of rotating charges
and also by using two-dimensional numerical calculations.
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For static applications, we are used to the concept that, when
comparing two materials, the one with higher strength will sustain
larger stress, larger strain, and more stretching. Ouxr present re-
sults indicate, however, that under dynamic conditions, the opposite
case, which seems contrary to common scnse, prevails. That is, under
dynamic conditions of stretching, the material with higher yield
stress i1s more unstable, will neck more, and break sooner.

3. The Effect of Disturbance Initiation Time

In this sub-section the effects of initiating the disturbance
at varlous times in a realistic shaped charge jet are presented. Con-
sider sn element of a jet at several stages from the time when it is
first formed until the time of its breakup as shown schematically in
Fig. 8. This element of jet has an initial velocity difference of
0.13 mm/pusec between its two ends. The initial length and velocity
gradient were selected such that, at the breakup time, the element
will have a length equivalent to the average measured length of a
typical jet segment from a 81.3mm BRL standard charge. We may there-
fore consider only one wavelength disturbance over this selected ele-
ment. When this jet element ie first formed one-dimensional calcula-
tions indicate its length whould be approximately l.lmm and its radius
should bte approximately 3mm. The times chosen to introduce the dis-
turbance, labelled t; through ts in Fig. 8, correspond to times 0 usec,
7.92 usec, 17.62 psec, 25,69 usec, and 45.71 pysec after the element
was first formed, respectively. The overall dimensions of this ele-
ment at these different times are summarized in Table V.

Table V

Dimensions of Jet Element Studiedwat Various Times After 1ts Formation

Run Time after Element Element A/2r Amplitude of Strain Rate
No. formation Length radius Imposed -1
(usec) (mm) (mm) Disturbance (usec )
(mm)
1 0 1.10 2.98 0.18 0.149 0.118
2 7,92 2.13 2.13 0.5 0.107 0.061
3 17.62 3.39 1.69 1.0 G.085 0.038
4 25.69 444 1.48 1.5 0,074 0.029
5 45,77 7.05 1.17 3.0 0.059 0.018
23

el nt'j




TIME

t TRAJECTORY SEGMENT TRAJECTORY
|_OF THE BACK OF THE FRONT

OF THE / OF THE ELEMENT
b EL EMENT

DISTURBANCE INITIATED
IN THE ELEMENT AT EACH

e / OF THESE TIMES

3 \-ELEMENT FIRST FORMED

POSITION IN THE JET £
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The HEMP calculations were performed using each of these times as a
separate starting point. The disturbance was introduced independently

at each of these times and each was treated as a separate problem.

The equation of state and other constants for copper stated in the
previous problem were again used. The yield stress was 2x109 Pa (2 kbar).
The amplitude of the imposed disturbance was taken at 5% of the

radius in each instance and i{s also given in Table V.

The five HEMP calculations indicate that, during short times
after the initiation of the disturbance, the amplitude of the surface
disturbance in Run No.4 grows the largest amount. This can be seen in
Fig. 9, where the relative growth, A, at a time 18 usec after the dis-
turbance initiation for each case is plotted versus the initial strain
rate. This gives an indication of how soon each disturbance begins to
grow. As time proceeds, however, and we continue the calculations,
the earlier configurations (Run Nos. 1-3) eventually reach a con-
figuration similar to Run No.4, and then the disturbance begins to
grow quickly., This can be seen in Fig. 10 where the relative growth
of Run Nos. 2,3, and 4 are plotted versus time. Examining Run No.2,
we see that the disturbance is stable until a time of approximately
30-35 usec after formation, then the growth rate drastically in-
creases. Run Nos. 3 and 4, in which the disturbance is initiated at
times later than Run No.2, also begin to grow more rapidly in the re-
gion 30-35 usec, Thus we see that, no matter how early we initiate
the disturbance, when a critical time is reached, the disturbance will
begin to grow and eventually the same final breakup configuration will
be obtained.

4, The Effect of Disturbance Wavelength

The effect of disturbance wavelength was studied by consider-
ing a jet of realistic radius and strain rate at a reasonably early
time after formation and introducing surface disturbances of differ-
ent wavelengths. A jet element having an initial radius of 2.13mm
and an initial strain rate of 0.061 usec™4 was used. The equation of
state and material constants for copper stzted in the previous problem
were again used. Four separate surface dis.urbances having initial
wavelengths of 1.065mm, 2.13mm, 4.26mm, and 8.52mm were introduced and
HEMP calculations made for each case. Note that we have chosen this
problem such that the case » = 2,13mm will eventually grow to the
observed segment length after the experimentally determined breakup
time for a typical shaped charge jet. Let us denote tiis "correct"
initial wavelength as Ay = 2,13mm. We can then denote the other
cases as 2 = RO/Z. A= 22 and X = 4)q, The relative growth, as
computed using the HEMP code for each of these cases, is plotted vs.
time in Fig. 11. From this plot we see that the disturbances having
initial wavelengths of A = }g/2 and X = 4} grow very slowly. The
wavelength A = )g, which will grov into the prover segment size, grows
very quickly but not quite as fast as the case A = lig.
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S. Irregular Surface Disturbance

To examine these wavelength effects further, we have numerically
studied jets having an irregular surface disturbance. In previous
cases, we have considered jets having a surface of a single sinusoidal
curve, Next, we have combined the four wavelengths of the previous
study to obtain an irregular surface disturbance which 1s described
by the following function:

4
27x%
= ¢ + A L cog —
0 0 {=1 ki

where ki = Xg/2, k2 = Ag, k3 = 2)g, k4 = 4)g. We have taken numer-
ical values to be rg = 2.13mm, Ag = 2.13mm, Ag = 0.026mm, and the
initial strain rate equal to 0.061 usec~1l., We again used the material
constants for copper described previously. The initial configuraticn
which has a length of 2Xg is shown in Fig. 12, together with the con-
figuration after 52 usec. We observe that the jet appears to neck in
two places. This indicates that ip is the dominant or fastest grow-
ing wavelength, which is in agreement with the experimentally ob-
tained segment length, To demonstrate this more quantitatively, we
have fit a Fourler series to the outer surface cf the configuration
after 52 usec shown in Fig. 12 and have examined the coefficients of
the terms of each wavelength. Denoting the length after 52 usec as
241, we observe that the largest of all the Fourier cuvefficients is
that of the term containing the length - = ;. A comparison of the
coefficlents of the four wavelengths of interest are also shown in
Fig. 12. Thus, this result indicates that the component with an
initial wavelength of X = 3, which stretches into ‘ = Xj after

52 .sec is the most critical one.

In the case above, tne initial disturbance consists of four
waves of different wavelength, which are ail''in phase'. We performed
yet arother irregular surface disturpance calculation. In this calcu-
lation, a "random” disturbance was used which was comprised of five
waves of different waveiength and phase angle-, so that the waves
would not be "in phase” at the ends. Thus, this new disturbtance
represents more closelv a random one. The tunction used for the sur-

face was
’ 2-x
=1, *A, I cos ! - iy
3 o \ ki 1
i=1
wher o as = ‘Qr:. Ky = ¢ U/Q, k3 =ty kg = 3-0/2, kg = 2%y, and =
JTT, s =367, sy = <7, 14 = 54%, 1= 237, Numerical values were
tarer as rg = 2,13, - = 2.1 mm, Ap = 0.053mm, and the initial strain
rate -aua. to U.ubkl _sec~l. he initial cenfiguration and the con-
fizuration ar-.r 4= sec of stretching as ~alculated by the HEMP
code are s m in Figz. 13, We =ee the et necking in two places
which again [~ :-ates that tre zrowth of the - = wave predominates

and that tne ~roper =t segment l=ngth will be attained at breakup.
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6. The Effect of Inertia

To study the importance of inertia effects on the growth of

surface disturbances in stretching shaped charge jets, we have made
HEMP code calculations of three jets. Each jet was {dentical in all
respects except for the density of the material used in the calcu-
lations. The configuration used was the standard single wave surface
disturbance depicted in Fig. 6 with ry = 2.13mm and wavelength equal
to 2.13mm., The initial amplitude used was Ag = 0.107mm and the
initial strain rate equal to .061 usec™l. The equation of state and
material constants described previously for copper were used except
now three different values of densitg were used o = 1x103 kg/m3,
o = 8.9x103 kg/m3, and po = 16.5x10 kg/m3. The relative growth vs,
time for each case is plotted in Fig. 14. We observe that increased
density, i.e. increased inertia force, has a retarding effect on dis-
turbance growth.
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IV. CONCLUSIONS

The major results and conclusions of the present research may
be summarized as follows:

Al

Measurement of Jet Radiographs

1. Data from jet radiographs, including jet velocity,
breakup time, and segment size, for jets from eleven
charges were compiled and plotted for easy reference.

2. These measured jet velocity and jet radius data
agree closely with those calculated from a one-dimensional
shaped charge model.

3. Analysis of this data together with using one-
dimensional calculations resulted in a semi-empirical
breakup time vs. jet radius curve for copper jets. This
curve can be used to estimate an approximate breakup
time for new charge designs.

Stability of Shaped Charge Jets

1. Simple stability analyses and experimental results
indicace that surface tension and aerodynamic forces
are not lmportant in the breakup of shaped charge jets.

2. Numerical HEMP code calculations of stretching
elastic-plastic jets subjected to surface disturbances
were conducted. The effects of material yield strength,
time of disturbance initiation, wavelength of the distur-
bance, irregular surface disturbances and jet density
were examined. The following results were found:

a. Jets with higher yield strengths break sooner, all
else being equal.

b. Jets with lower densities will break sooner, all
else being equal.

c. For the shaped charge jet calculated, there is a
critical time for the growth of the disturbance
amplitude. Disturbances introduced early do not grow
appreciably before this time, but grow rapidly after
this critical time. Disturbances introduced after this
time also grow rapidly.

d. A critical wavclength (or a range of wavelengths)
exists; disturbances having this wavelength grow faster
than all others. The length of the broken jet segment
caused by this critical wave is in the range of measured
jet segment lengths.

e, When irregular, or random, surface disturbances are
introduced, the growth 1is again domirated by the distur-
bance component with the critical wavelength. The jet
surface grows into a shape similar to that obtained if

34



only the wave with the critical length were introduced.
3. Materials with high density and low yield strength

are promising liner materials which will likely retard
the breakup of the resulting jet.

35



o] AT

TN Y

e

e

V. REFERENCES

1.

10.

11.

12.

13.

Chou, P.C. and Carleone, J., "Calculation of Shaped Charge
Jet Strain, Radius, and Breakup Time,'" U.S. ..rmy Ballistic
Research Laboratories (BRL) Contract Report No. 246,

July 1975, (AL *B007240L)

Chou, F.C. and Carleone, J., 'The Breakup of Shaped Charge
Jets," Proceedings of the 2nd International Symposium on
Ballistics, March 9-11, 1976, Daytona Beach, Florida, Sponsored
by the American Defense Preparedness Association.

DiPersio, R., Jones, W.H., Merendino, A.B., and Simon, J.,
"Characteristics of Jets from Small Caliber Shaped Charges
with Copper and Aluminum Liners," U.S. Army Ballistic
Regearch Laboratories (BRL) Memorandum Rept. No. 1866,
Sept. 1967. (AD #823839)

Chou, P.C.,, Carleone, J., and Karpp, R.R., "Criteria for
Jet Formation from Impinging Shells and Plates," J. Applied
Physics, Vol. 47, July 1976, pp. 2975-298l.

Pugh, E.M., Eichelberger, R.J., and Rostoker, N., "Theory
of Jet Formation by Charges with Lined Conical Cavities,"
J. Applied Physics, Vol. 23, No. 5, May 1952, pp. 532-536.

Held, M., "Air Target Warheads,'" International Defense
Review, No. 35, 1975.

Perez, E., private communication, French-German Institute
of Saint Louis (ISL), 12 Rue de %'Industril, St. Louls
58 France. :

Carleone, J. and Chou, P.C., "A One-Dimensional Theory to
Predict the Strain and Radius of Shaped Charge Jets,"
Proceedings of the First International Symposium on
Ballistics, Mov. 13-15, 1974, Orlando, Florida, sponsored
by the American Defense Preparedness Association.

Chou, P,.C. and Carleone, J., '"Shaped Charge Jet Breakup
Research," Quarterly Tech. Rept. for Contract No. DAADOS~
75-C-07%3 for the period June 12-Sept. 11, 1975.

Chou, P.C. and Carleone, J., "'Shaped Charge Jet Breakup
Research,"”" Quarterly Tech. Rept. for Contract No. DAADOS-
75-C-0753 for the period Sept. 1l2-Dec. 11, 1975.

Lord Rayleigh, The Theory of Sound, 2nd. ed., Vol. 2,
Dover, New York, 1945, pp. 351-363.

Weber, C.. "Zum Zerfall eines Flussigkeitsstrahles"
(Disentegration of a Liquid Jet), Zeitschrift fur
Angewandte Mathematik und Mechanik, Vol.ll, No, 2, April
1931, pp. 136-153.

Levich, V.G., Physicochemical Hydrodynamics, Prentice-Hall
1962,

L. vd

ot e e . LY o

~

v
SR P - . U

T Ui i tealY




|
?
'
'
14,
;.'n
’ 15.
) 16.
5
N é )
o i; 17.
P
& 18,
' !
‘ 11
: ! 19,
:
H
: 20.
€
o
i k 21.
{
4
' , 22.
f
£
o 23
B
; 24,
j
*
|
g
o !
. )
e
a'.;'- B X
!
| |
P 1
b !

Mikami, T., Cox, R.G., and Mason, S.G., "Breakup of Ex-
tending Liquid Threads,"' Post-Graduate Research Laboratory
Report, Pulp and Paper Research Institute of Canada,
PGRL/72, October 1974.

Goldin, M., Yerushalmi, J., Ffeffer, R. and Shianar, R.,
"Breakup of a Laminar Capillary Jet of a Viscoelastic
Fluid," J. Fluid Mech., Vol. 38, part 4, 1969, pp. 689-711,

Anno, J.N. and Walowit, J.A., "Integral Form of tie
Derivation of Reyleigh's Criterion for the Instability of
an Inviscid Cylindrical Jet," American Journal of Physics,
Vol. 38, No. 10, Oct. 1970, pp. 1255-1256.

Anno, J.N., "Influence of Viscosity on the Stability of a
Cylindrical Jet," AIAA Journal, Vol. 12, No. 8, Aug. 1974,
pp. 1137-1138.

Vitali, R., private communication, U.S. Army Ballistic
Research Laboratories.

Frey, R., private communication, U.S. Army Ballistic
Reasearch Laboratories.

Wilkins, M.L., "Calculation of Elastic-Plastic Flow,"
Universicty of California, Lawrence Livermore Laboratory,
Rept. UCRL-7322, Rev. 1, Jan. 24, 1969,

Giroux, E.D., "HEMP User's Manual," University of
California, Lawrence Livermore Labora“ory, Rept. UCRL~
51079, June 24, 1971.

Karpp, R.R., private communicaticn, U.S. Army Ballistic
Research Laboratories.

Karpp., R.R. and Simon. J.. "An Estimate of the Strength of
a Copper Shaped Charge Jet and the Effect of Strergth on the
Breakup of a Stretching Jet," U.S. Army Ballistic Research
Laboratories (BRL) Report No. 1893, June 1976. (AD #B012141)

Simon, J., "The Effect of Explosive Detonation Characteristics

on Shaped Charge Performance,'" Army Science Conference,
West Point, N.Y., June, 1974.

37

.
:
K
i
2
E
o
k




Appendix A

This appendix contains the specifications of the eleven charges
studied in this report.
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FIGURE Al. Geometry of the 38.1 mm Copper and Aluminum
lined charges with various cone angles.
(Charge Nos. 1-6,9-11)

{(from Ref. )
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FIGURE A2. Geometry of the 50.8 mm, 42° Copper lined
charges with different wall thicknesses.

(Charge Nos. 5-7)
(Courtesv of R. Jameson)
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Appendix B

This appendix contains a graphical display of jet velocity, jet
breaku. time, and jet radius data computed from the jet radiographs
of the eleven charges studied in this report.
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FIGURE B7. Jet breakup time vs. jet particle position
at t=107.7 usec for the 38.1 mm, 20°, 1.168 mm wall,
copper lined charge (charge no. 1).
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FIGURE B9. Jet breakup time vs. jet particle poritgon
at t=122.7 ygec for the 38.1mm, 60,
1.168 mm wall Copper lined charge.
(Charge No. 3)
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FIGURE B18. Theoretical and experimental jet radius vs.
jet particle position at t=107.7 usec for the 38.1 mm, 20°,
1.168 mm wall, copper lined charge (charge no. 1).

(TR}



1.2 r
| ~ 8}
g (o) o] [0 TR
43 © 0000 o o
: é nk 0O 0O 0o O O 00000 D QO
= o
— T‘, at Lb
(B
-
0 i i H 3
300 409 500 600 700

PARTICLE POSITION IN JET € (mm)

FIGURE B1¢. Theoretical and experimental jet radius vs.
jet particle position at t=93.4 usec for the 38.1 mm, 40°,
1.168 mm wall, copper lined charge (charge nc. 2).
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FIGURE B20. Theoretical and experimental jet radius vs. jet ]
particle position at t=122.7 usec for the 38.1 am, 60°,
1.168 mm wall copper lined charge {charge unc. 3). 3
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FIGURE B2l. Theoretical and experimental jet radius vs. jet
particle position at t=133.3 isec for the 38.1 mm, s0°,
1.168 mm wall copper lined charge (charge no. 4}.
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FIGURE B22. Theoretical and experimental jet radius vs. jet

particle position at t=113.1 usec for the 38.1 mm, 40°,
1.626 mm wall aluminum lined charge (charge no. 9).
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FIGURE B23. Theoretical and experimental jet rad{ius vs. jet
particle position at t=97.7 usec for the 38.1 mm, 60°,
1.626 mm wall aluminum lined charge (charge no. 10).

69



2.4 o

2.0F
1.6F
% o
~ ]
gllz o
= o
=
o
L 00 0000000 O
8
-.][::_—ri at th
.q 1 1 1 N |
500 600 700 800 900

PARTICLE POSITION Il JET & (Mm)

FIGURE B24. Theoretical and experimental jet radius vs. jet
particle position at t=132.8 usec for the 38.1 mm, 90°,
1.626 mm wall aluminum lined charge (charge no. 11).
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Appendix C

This appendix contains tabulated data for the jet velocity, break-
up time, length, diameter, radius, aspect ratio and AV; of the jet
segments as computed from radiograph measurements for the eleven
charges studied in this report.

The breakup times in these tables are referred to t=0 when the
charge is first initiated. Throughout the rest of the report, including
the plots of appendix B, all times are referred to t=0 when the
detonation wave first reaches the apex of the liner cone. The time
it takes for the wave to travel from the point of initiation to the
apex of the cone for charges 5,6 and 7 is 6.4usec; for all other
charges this time is 7.0usec.
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